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Supplemental Equations 15 

When a quasi-monochromatic light passes through a no-energy-loss optical channel, both 16 
the spatial distribution and polarization can be perturbed, and the light field may be deformed 17 
or may even evolve into partially coherent and partially polarized light field. Modal 18 
decomposition is a powerful tool for investigating the evaluation of such a light field. The 19 
fundamental theory has been well introduced in the literature1,2,49,50. The invariant was 20 
quantitatively investigated in a general one-sided spatial transmission channel19. The 21 
investigation revealed the invariance of the vector quality factor (or polarization degree) in a 22 
unitary channel for a coherent vector beam via the adjustment of the basis of coherent modal 23 
decomposition. However, the polarization and spatial degrees of freedom (DoF) may be 24 
coupled during propagation1. Further experimental evidence, such as the entropy conversion 25 
experiment28-30, indicate that the beam coherence-polarization (BCP) matrix combines the 26 
properties of a vector partially coherent light field, as mentioned in a previous report32. Thus, 27 
by applying the modal decomposition on the BCP matrix, we performed an analysis using a 28 
partially coherent and partially polarized light beam with diagonal BCP matrix. The overall 29 
coherence entropy of the light field and its robustness were investigated. It was found that, for 30 
the scalar case and in a unitary channel, the mode-weights and corresponding coherence 31 
entropy can be reconstructed. For the vector case, the modal decomposition of diagonal 32 
coherence-polarization matrix can be simplified as that of a scalar cross-spectral density 33 
defined with 𝑊𝑊𝑒𝑒𝑒𝑒 = 𝑊𝑊𝑥𝑥𝑥𝑥 + 𝑊𝑊𝑦𝑦𝑦𝑦

 33. Assuming that two polarizations share the same set of 34 
orthogonal spatial basis, the overall mode-weights for a light source with a diagonal BCP 35 
matrix remain consistent during propagation in a unitary channel. The premise for both scalar 36 
and vector cases is projecting the cross-spectral density and BCP matrix onto an appropriate 37 
orthogonal vector and spatial basis.  38 

I. Scalar partially coherent beam 39 

According to Mercer’s theorem35, for a continuous, Hermitian, non-negative definite 40 
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Hilbert–Schmidt kernel that is not identically zero, the cross-spectral density may be reformed 41 
with modal decomposition, as shown below: 42 

𝑊𝑊0(𝐫𝐫1, 𝐫𝐫2) = ∑ 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛∗(𝐫𝐫1)𝜙𝜙𝑛𝑛(𝐫𝐫2)𝑛𝑛 .                                        (S1) 43 

Here, the series is absolutely and uniformly convergent. The frequency is omitted for brevity 44 
under the premise of quasi-monochromatic light. Thus, the partially coherent beam just means 45 
spatially partially coherent. Further, 𝜙𝜙𝑛𝑛 is an eigenfunction, and the corresponding coefficient 46 
is 𝜆𝜆𝑛𝑛, which can be calculated using the homogeneous Fredholm integral equation:   47 

∫𝑊𝑊0(𝐫𝐫1, 𝐫𝐫2)𝜙𝜙𝑛𝑛(𝐫𝐫1)𝑑𝑑𝐫𝐫1 = 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛(𝐫𝐫2).                                       (S2) 48 

The hermiticity, i. e. 𝑊𝑊0(𝐫𝐫2, 𝐫𝐫1) = W0
∗(𝐫𝐫1, 𝐫𝐫2), and non-negative definiteness of 𝑊𝑊0(𝐫𝐫1, 𝐫𝐫2) 49 

ensures 𝜆𝜆𝑛𝑛 ≥ 0. The orthogonal nature ensures that ⟨𝜙𝜙𝑛𝑛|𝜙𝜙𝑚𝑚⟩𝑚𝑚≠𝑛𝑛 = 0.  50 

∫𝜙𝜙𝑛𝑛∗(𝐫𝐫)𝜙𝜙𝑚𝑚(𝐫𝐫)𝐝𝐝𝐝𝐝 = 𝛿𝛿𝑚𝑚𝑚𝑚,                                                (S3) 51 

where 𝛿𝛿𝑚𝑚𝑚𝑚 is the Kronecker symbol and 𝛿𝛿𝑚𝑚𝑚𝑚 = 0 only when 𝑚𝑚 ≠ 𝑛𝑛.  52 

We consider a general partially coherent light field of an ensemble of function {𝑈𝑈(𝐫𝐫)}, 53 
each member of which is a superposition of eigenfunctions, written as 𝑈𝑈(𝐫𝐫) = ∑ 𝛼𝛼𝑛𝑛𝜙𝜙𝑛𝑛(𝐫𝐫)𝑛𝑛 . 54 
Here, 𝛼𝛼𝑛𝑛 is a random coefficient of the corresponding eigenfunctions 𝜙𝜙(𝐫𝐫). The cross-spectral 55 
density is then written as2:  56 

𝑊𝑊0(𝐫𝐫1, 𝐫𝐫2) = 〈𝑈𝑈∗(𝐫𝐫1)𝑈𝑈(𝐫𝐫2)〉 = ∑ ∑ 〈𝛼𝛼𝑛𝑛∗𝛼𝛼𝑚𝑚〉𝜙𝜙𝑛𝑛∗(𝐫𝐫1)𝜙𝜙𝑚𝑚(𝐫𝐫2)𝑚𝑚𝑛𝑛 ,                  (S4) 57 

where 〈 〉 means ensemble average. Given that the coefficient is statistically independent, that 58 
is  59 

〈𝛼𝛼𝑛𝑛∗𝛼𝛼𝑚𝑚〉 = 𝜆𝜆𝑚𝑚𝑚𝑚𝛿𝛿𝑚𝑚𝑚𝑚,                                                     (S5) 60 

then,  61 

𝑊𝑊0(𝐫𝐫1, 𝐫𝐫2) = ∑ 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛∗(𝐫𝐫1)𝜙𝜙𝑛𝑛(𝐫𝐫2)𝑛𝑛 .                                        (S6) 62 

This is consistent with Eq. (S1) and 𝜆𝜆𝑛𝑛 = 〈𝛼𝛼𝑛𝑛∗𝛼𝛼𝑛𝑛〉.  63 

In scalar cases, we do not consider the polarization modulation. After the partially 64 
coherent light passes through a unitary channel with transmission matrix 𝑇𝑇, the cross-spectral 65 
density is 66 

𝑊𝑊𝑇𝑇(𝛒𝛒1,𝛒𝛒2) = ∑ 𝜆𝜆𝑛𝑛′ 𝜙𝜙𝑛𝑛′∗(𝛒𝛒1)𝜙𝜙𝑛𝑛′ (𝛒𝛒2)𝑛𝑛 .                                     (S7) 67 

Because of the unitary nature of 𝑇𝑇, that is 𝑇𝑇† = 𝑇𝑇−1, the basis |𝜙𝜙𝑛𝑛′ ⟩ = 𝑇𝑇|𝜙𝜙𝑛𝑛⟩ is still orthogonal 68 
as 69 

⟨𝜙𝜙𝑛𝑛′ |𝜙𝜙𝑚𝑚′ ⟩𝑚𝑚≠𝑛𝑛 = ⟨𝜙𝜙𝑛𝑛|𝑇𝑇†𝑇𝑇|𝜙𝜙𝑚𝑚⟩𝑚𝑚≠𝑛𝑛 = ⟨𝜙𝜙𝑛𝑛|𝜙𝜙𝑚𝑚⟩𝑚𝑚≠𝑛𝑛 = 0.                      (S8) 70 

The modal decomposition can then be written as 71 

∫𝑊𝑊𝑇𝑇(𝛒𝛒1,𝛒𝛒2)𝜙𝜙𝑛𝑛′ (𝛒𝛒1)𝑑𝑑𝛒𝛒1 = 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛′ (𝛒𝛒2).                                   (S9) 72 

Here, mode-weights {𝜆𝜆𝑛𝑛}  are consistent, and thus, the coherence entropy defined with 𝑆𝑆 =73 
−∑ 𝜆𝜆 𝑛𝑛log𝑁𝑁 (𝜆𝜆𝑛𝑛)𝑛𝑛  remains consistent during propagation under the premise of unitary optical 74 
channel. Note that the mode-weights {𝜆𝜆𝑛𝑛}  are globally normalized. Some representative 75 



3 

 

 

examples are given below. 76 

1. Orthogonal dual-mode light field.  77 

For brevity, we first consider a light field containing two incoherent orthogonal spatial 78 
modes 𝑈𝑈1(𝐫𝐫) and 𝑈𝑈2(𝐫𝐫), written as 𝑈𝑈1(𝐫𝐫) = 𝛼𝛼1𝜙𝜙1(𝐫𝐫) and 𝑈𝑈2(𝐫𝐫) = 𝛼𝛼2𝜙𝜙2(𝐫𝐫). Then, the cross-79 
spectral density will be 80 

𝑊𝑊0(𝐫𝐫1, 𝐫𝐫2) = 〈𝑈𝑈∗(𝐫𝐫1)𝑈𝑈(𝐫𝐫2)〉 = 𝑈𝑈1∗(𝐫𝐫1)𝑈𝑈1(𝐫𝐫2) + 𝑈𝑈2∗(𝐫𝐫1)𝑈𝑈2(𝐫𝐫2) 81 

= 𝜆𝜆1𝜙𝜙1∗(𝐫𝐫1)𝜙𝜙1(𝐫𝐫2) + 𝜆𝜆2𝜙𝜙2∗(𝐫𝐫1)𝜙𝜙2(𝐫𝐫2),        (S10) 82 

where 𝜆𝜆1 = 〈𝛼𝛼1∗𝛼𝛼1〉  and 𝜆𝜆2 = 〈𝛼𝛼2∗𝛼𝛼2〉 . When the light source propagates through a unitary 83 
optical system, two modes evolve into  84 

|𝑈𝑈1′⟩ = 𝑇𝑇|𝑈𝑈1⟩ = 𝛼𝛼1𝑇𝑇|𝜙𝜙1⟩ = 𝛼𝛼1|𝜙𝜙1′ ⟩, 85 

|𝑈𝑈2′⟩ = 𝑇𝑇|𝑈𝑈2⟩ = 𝛼𝛼2𝑇𝑇|𝜙𝜙2⟩ = 𝛼𝛼2|𝜙𝜙2′ ⟩,                                     (S11) 86 

where |𝑈𝑈𝑖𝑖′⟩ denotes the modes on the propagation plane and |𝜙𝜙𝑖𝑖′⟩ is corresponding orthogonal 87 
basis (𝑖𝑖 = 1,2). The unitary matrix 𝑇𝑇 ensures the orthogonal nature of the new basis, that is 88 
⟨𝜙𝜙1′ |𝜙𝜙2′ ⟩ = ⟨𝜙𝜙1|𝑇𝑇†𝑇𝑇|𝜙𝜙2⟩ = ⟨𝜙𝜙1|𝜙𝜙2⟩ = 0. Then, 89 

𝑊𝑊𝑇𝑇(𝝆𝝆1,𝝆𝝆2) = 〈𝑈𝑈′∗(𝝆𝝆1)𝑈𝑈′(𝝆𝝆2)〉 =  𝜆𝜆1𝜙𝜙1′∗(𝝆𝝆1)𝜙𝜙1′ (𝝆𝝆2) + 𝜆𝜆2𝜙𝜙2′∗(𝝆𝝆1)𝜙𝜙2′ (𝝆𝝆2),        (S12) 90 

where the mode-weights {𝜆𝜆𝑛𝑛} (n = 1 and 2) remain constant. If we choose a wrong basis |𝜙𝜙𝑤𝑤𝑤𝑤′ ⟩, 91 
we will require a higher number of modes to characterize 𝑊𝑊𝑇𝑇(𝝆𝝆1,𝝆𝝆2): 92 

𝑊𝑊𝑇𝑇(𝝆𝝆1,𝝆𝝆2) =  𝜆𝜆𝑤𝑤1𝜙𝜙𝑤𝑤1′∗ (𝝆𝝆1)𝜙𝜙𝑤𝑤1′ (𝝆𝝆2) + 𝜆𝜆𝑤𝑤2𝜙𝜙𝑤𝑤2′∗ (𝝆𝝆1)𝜙𝜙𝑤𝑤2′ (𝝆𝝆2) 93 

+𝜆𝜆𝑤𝑤3𝜙𝜙𝑤𝑤3′∗ (𝝆𝝆1)𝜙𝜙𝑤𝑤3′ (𝝆𝝆2) + 𝜆𝜆𝑤𝑤4𝜙𝜙𝑤𝑤4′∗ (𝝆𝝆1)𝜙𝜙𝑤𝑤4′ (𝝆𝝆2) …,              (S13) 94 

where the mode-weights {𝜆𝜆𝑤𝑤𝑤𝑤} are global normalized. Thus, the coherence entropy defined as 95 
𝑆𝑆 = −∑ 𝜆𝜆𝑤𝑤𝑤𝑤log𝑁𝑁 (𝜆𝜆𝑤𝑤𝑤𝑤)𝑛𝑛  changes. This is consistent with the conclusion of a previous report19. 96 

2. Multi-mode partially coherent light. 97 

In the main manuscript, we consider a general case, that is the partially coherent light 98 
constructed with multi modes (in total M) and 𝑈𝑈𝑖𝑖(𝐫𝐫) = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝜙𝜙𝑛𝑛(𝐫𝐫)𝑛𝑛   where {𝛼𝛼𝑖𝑖𝑖𝑖}  are 99 
statistically independent. 100 

𝑊𝑊0(𝐫𝐫1, 𝐫𝐫2) = 〈𝑈𝑈∗(𝐫𝐫1)𝑈𝑈(𝐫𝐫2)〉 101 

= 𝑈𝑈1∗(𝐫𝐫1)𝑈𝑈1(𝐫𝐫2) + 𝑈𝑈2∗(𝐫𝐫1)𝑈𝑈2(𝐫𝐫2) + ⋯+ 𝑈𝑈𝑝𝑝∗(𝐫𝐫1)𝑈𝑈𝑝𝑝(𝐫𝐫2) 102 

= ∑ ∑ 𝛼𝛼1𝑛𝑛∗ 𝛼𝛼1𝑚𝑚𝜙𝜙𝑛𝑛′∗(𝛒𝛒1)𝜙𝜙𝑚𝑚′ (𝛒𝛒2)𝑚𝑚𝑛𝑛 + ∑ ∑ 𝛼𝛼2𝑛𝑛∗ 𝛼𝛼2𝑚𝑚𝜙𝜙𝑛𝑛′∗(𝛒𝛒1)𝜙𝜙𝑚𝑚′ (𝛒𝛒2)𝑚𝑚𝑛𝑛 + ⋯  103 

+∑ ∑ 𝛼𝛼𝑝𝑝𝑝𝑝∗ 𝛼𝛼𝑝𝑝𝑝𝑝𝜙𝜙𝑛𝑛′∗(𝛒𝛒1)𝜙𝜙𝑚𝑚′ (𝛒𝛒2)𝑚𝑚𝑛𝑛   104 

= ∑ ∑ 〈𝛼𝛼𝑛𝑛∗𝛼𝛼𝑚𝑚〉𝜙𝜙𝑛𝑛∗(𝐫𝐫1)𝜙𝜙𝑚𝑚(𝐫𝐫2)𝑚𝑚𝑛𝑛   105 

= ∑ 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛∗(𝐫𝐫1)𝜙𝜙𝑛𝑛(𝐫𝐫2)𝑛𝑛 .                                             (S14) 106 

Here 𝑝𝑝 is the total number of modes 𝑈𝑈, 𝜆𝜆𝑛𝑛 = 〈𝛼𝛼𝑛𝑛∗𝛼𝛼𝑛𝑛〉, and 〈 〉 means ensemble average. 107 
When the light source propagates through a unitary optical system, each mode evolves into  108 

|𝑈𝑈𝑖𝑖′⟩ = 𝑇𝑇|𝑈𝑈𝑖𝑖⟩ = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖𝑇𝑇|𝜙𝜙𝑛𝑛⟩𝑛𝑛 = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖|𝜙𝜙𝑛𝑛′ ⟩𝑛𝑛 .                          (S15) 109 
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Similarly, 110 

𝑊𝑊𝑇𝑇(𝛒𝛒1,𝛒𝛒2) = 〈𝑈𝑈′∗(𝛒𝛒1)𝑈𝑈′(𝛒𝛒2)〉 = ∑ 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛′∗(𝛒𝛒1)𝜙𝜙𝑚𝑚′ (𝛒𝛒2)𝑛𝑛 .                (S16) 111 

The mode-weights {𝜆𝜆𝑛𝑛} are constant under the premise that matrix 𝑇𝑇 does not change the 112 
orthogonal nature of the basis. Similarly, as discussed in Fig. 2 and Table 1, a wrong basis may 113 
affect the coherence entropy defined according to the mode-weights basis.  114 

Example 1: Fraunhofer diffraction of a GSM. 115 

The Fraunhofer diffraction and Fortier transform are typical unitary transformations. 116 
Considering the 1D Fraunhofer diffraction of Gaussian Shell modal (GSM) beam as an 117 
example, whose cross-spectral density is written as 118 

𝑊𝑊0(𝑥𝑥1, 𝑥𝑥2) = exp �− 𝑥𝑥12+𝑥𝑥22

4𝜎𝜎02
� exp �− (𝑥𝑥1−𝑥𝑥2)2

2𝛿𝛿02
� = ∑ 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛∗(𝑥𝑥1)∞

𝑛𝑛=0 𝜙𝜙𝑛𝑛(𝑥𝑥2),          (S17) 119 

where, 120 

𝜙𝜙𝑛𝑛(𝑥𝑥) = �2𝑐𝑐
𝜋𝜋
�
1/4 1

√2𝑛𝑛𝑛𝑛!
𝐻𝐻𝑛𝑛�√2𝑐𝑐𝑥𝑥� exp(−𝑐𝑐𝑥𝑥2), 121 

𝜆𝜆𝑛𝑛 = � 𝜋𝜋
𝑎𝑎+𝑏𝑏+𝑐𝑐

�
1/2

� 𝑏𝑏
𝑎𝑎+𝑏𝑏+𝑐𝑐

�
𝑛𝑛

,  122 

𝑎𝑎 = 1
4𝜎𝜎02

, 𝑏𝑏 = 1
2𝛿𝛿02

, and 𝑐𝑐 = √𝑎𝑎2 + 2𝑎𝑎𝑎𝑎.                                   (S18) 123 

On the far field plane: 124 

𝑊𝑊𝑇𝑇(𝜌𝜌1,𝜌𝜌2) = −
exp(𝑖𝑖2𝑘𝑘𝑘𝑘)
𝜆𝜆2𝑧𝑧2

exp �
𝑖𝑖𝑖𝑖
2𝑧𝑧

(𝜌𝜌12 + 𝜌𝜌22)� 125 

× ∫ ∫ W(𝑥𝑥1, 𝑥𝑥2)𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖𝑖𝑖
𝑧𝑧

(𝑥𝑥1𝜌𝜌1 − 𝑥𝑥2𝜌𝜌2)� 𝑑𝑑𝑥𝑥1𝑑𝑑𝑥𝑥2
∞
−∞

∞
−∞ .      (S19) 126 

After simple derivations and using the equation ∑ 𝐻𝐻𝑛𝑛(𝑥𝑥)𝐻𝐻𝑛𝑛(𝑦𝑦)
𝑛𝑛!

𝑡𝑡𝑛𝑛 = (1 −∞
𝑛𝑛=0127 

4𝑡𝑡2)−1/2𝑒𝑒𝑒𝑒𝑒𝑒 �𝑦𝑦2 − (𝑦𝑦−2𝑥𝑥𝑥𝑥)2

1−4𝑡𝑡2
�, W(𝜌𝜌1,𝜌𝜌2) can be simplified as 128 

𝑊𝑊(𝜌𝜌1,𝜌𝜌2) = −𝜋𝜋
𝑐𝑐
exp(𝑖𝑖2𝑘𝑘𝑘𝑘)
𝜆𝜆2𝑧𝑧2

exp �𝑖𝑖𝑖𝑖
2𝑧𝑧

(𝜌𝜌12 + 𝜌𝜌22)� exp �− 𝜌𝜌12+𝜌𝜌22

4𝜎𝜎𝑤𝑤2
� exp �− (𝜌𝜌1−𝜌𝜌2)2

2𝛿𝛿𝑤𝑤
�,        (S20) 129 

where 𝜎𝜎𝑤𝑤 = γ𝜎𝜎0 , 𝛿𝛿𝑤𝑤 = γ𝛿𝛿0  and γ = 2𝑐𝑐𝑐𝑐
𝑘𝑘

 . Eq. (S20) can also be incoherently decomposed as 130 

W(𝜌𝜌1,𝜌𝜌2) = ∑ 𝜆𝜆𝑛𝑛𝜙𝜙𝑛𝑛′∗(𝜌𝜌1)∞
𝑛𝑛=0 𝜙𝜙𝑛𝑛′ (𝜌𝜌2), where 𝜙𝜙𝑛𝑛′  has similar expressions as Eq. (S18): 131 

𝜙𝜙𝑛𝑛′ (𝜌𝜌1) = �2𝑐𝑐
𝜋𝜋
�
1/4 1

√2𝑛𝑛𝑛𝑛!
× 𝐻𝐻𝑛𝑛 �−√2𝑐𝑐 �𝜌𝜌1

γ
�� exp �−𝑐𝑐 �𝜌𝜌2

γ
�
2
�, 132 

𝜆𝜆𝑛𝑛 = � 𝜋𝜋
𝑎𝑎+𝑏𝑏+𝑐𝑐

�
1/2

� 𝑏𝑏
𝑎𝑎+𝑏𝑏+𝑐𝑐

�
𝑛𝑛

, 133 

𝑎𝑎 = 1
4𝜎𝜎02

, 𝑏𝑏 = 1
2𝛿𝛿02

, and 𝑐𝑐 = √𝑎𝑎2 + 2𝑎𝑎𝑎𝑎.                                  (S21) 134 

A comparison of Eq. (S18) and Eq. (S21) indicates that because of the unitary nature of 135 
the Fraunhofer transmission matrix T, 𝜙𝜙𝑛𝑛′  is simply scaled based on 𝜙𝜙𝑛𝑛, and the mode-weight 136 
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𝜆𝜆𝑛𝑛 is unchanged. The Fourier transform through a spherical lens exhibits a similar form as the 137 
Fraunhofer diffraction, and thus, the conclusion is similar. Note that this convenient calculation 138 
benefits from the clear mathematical model of the GSM beam. For partially coherent beams 139 
with more complex cross-spectral density, the theoretical solution cannot be easily derived. 140 
Thus, we propose the modal decomposition method and verify the accuracy with a simple GSM 141 
beam. 142 

Example 2: cylindrical lens. 143 

We consider the cylindrical lens as an example to show the flexibility of measurement. 144 
Owing to the transmission matrix T, each mode on the source plane |𝑈𝑈𝑖𝑖⟩ transforms to |𝑈𝑈𝑖𝑖𝑆𝑆𝑆𝑆� =145 
𝑇𝑇𝑆𝑆𝑆𝑆|𝑈𝑈𝑖𝑖⟩  for a spherical lens or |𝑈𝑈𝑖𝑖𝐶𝐶𝐶𝐶� = 𝑇𝑇𝐶𝐶𝐶𝐶|𝑈𝑈𝑖𝑖⟩  for a cylindrical lens system. In a two-146 
dimensional case and spherical lens system, the modal decomposition on the source and focal 147 
plane for each mode can be written as 148 

𝑈𝑈𝑖𝑖(𝐫𝐫) = ∑ 𝛼𝛼𝑛𝑛𝑛𝑛𝜙𝜙𝑛𝑛(𝐫𝐫)𝑁𝑁
𝑛𝑛=1 , 149 

𝑈𝑈𝑖𝑖𝑆𝑆𝑆𝑆(𝝆𝝆) = ∑ 𝛼𝛼𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆𝜙𝜙𝑛𝑛𝑆𝑆𝑆𝑆(𝝆𝝆)𝑁𝑁𝑠𝑠𝑠𝑠
𝑛𝑛=1 ,                                            (S22) 150 

where 𝑁𝑁𝑠𝑠𝑠𝑠 = 𝑁𝑁 is the total mode number, {𝜙𝜙𝑛𝑛𝑆𝑆𝑆𝑆} is the basis fitted on the spherical lens focal 151 
plane, and 𝛼𝛼𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 = 𝛼𝛼𝑛𝑛𝑛𝑛 in spherical lens focusing. However, in a cylindrical lens system, both 152 
the simulation and experimental results, indicate that the intensities tilt into an elongated spot 153 
(see Fig. 2 in the main manuscript). If the differences between cylindrical lenses and spherical 154 
lenses, in addition to the tilt transformation of the light spot, are ignored and the basis is fitted 155 
using the beam waist and coherence along certain direction, the modal decomposition becomes 156 

𝑈𝑈𝑖𝑖𝐶𝐶𝐶𝐶(𝝆𝝆) = ∑ 𝛼𝛼𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶𝜙𝜙𝑛𝑛𝑆𝑆𝑆𝑆(𝝆𝝆)𝑁𝑁𝑐𝑐𝑐𝑐
𝑛𝑛=1 ,                                           (S23) 157 

where the basis {𝜙𝜙𝑛𝑛𝑆𝑆𝑆𝑆} is consistent with Eq. (S22), while the mode number 𝑁𝑁𝑐𝑐𝑐𝑐 and the mode-158 
weights 𝛼𝛼𝑛𝑛𝑛𝑛𝐶𝐶𝐶𝐶 are changed, which may also result in a change in entropy. Although the basis can 159 
be chosen flexibly, there may be a distortion in mode-weights when choosing an inappropriate 160 
basis. Therefore, we apply transmission matrix 𝑇𝑇 onto the source basis as |𝜙𝜙𝑛𝑛𝐶𝐶𝐶𝐶⟩ = 𝑇𝑇𝐶𝐶𝐶𝐶|𝜙𝜙𝑛𝑛⟩ and 161 
the modal decomposition becomes  162 

𝑈𝑈𝑖𝑖𝐶𝐶𝐶𝐶(𝝆𝝆) = ∑ 𝛼𝛼𝑛𝑛𝑛𝑛′𝐶𝐶𝐶𝐶𝜙𝜙𝑛𝑛𝐶𝐶𝐶𝐶(𝝆𝝆)𝑁𝑁𝑐𝑐𝑐𝑐
′

𝑛𝑛=1 .                                         (S24) 163 

Based on the aforementioned analysis, 𝛼𝛼𝑛𝑛𝑛𝑛′𝐶𝐶𝐶𝐶 = 𝛼𝛼𝑛𝑛𝑛𝑛𝑆𝑆𝑆𝑆 = 𝛼𝛼𝑛𝑛𝑛𝑛 and 𝑁𝑁𝑐𝑐𝑐𝑐′ = 𝑁𝑁 (no energy loss). 164 
Then, the final mode-weights are consistent with the source plane. The unitary nature of the 165 
channel ensures the orthogonality of the new basis after applying transmission matrix T on the 166 
original basis. More importantly, on the detection plane, we do not fix any aberrations in the 167 
light field but adjust the basis in modal decomposition calculation. 168 

3. Modal decomposition in experiment. 169 

When measuring a GSM, using the incoherent modal decomposition experimental method, 170 
a series of {𝑈𝑈𝑖𝑖′(𝝆𝝆)} can be measured and further used in the calculation of 𝑊𝑊𝑇𝑇(𝛒𝛒1,𝛒𝛒2). For a 171 
unitary optical system, such as Fraunhofer diffraction and Fourier transform, |𝜙𝜙𝑛𝑛′ ⟩  can be 172 
evaluated by applying the transmission matrix onto the original orthogonal basis. For a simple 173 
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case with theoretical solutions, the new basis on the output plane may be chosen by fitting 174 
𝑊𝑊𝑇𝑇(𝛒𝛒1,𝛒𝛒0) to obtain the beam and coherence widths. Then, the mode-weights can be measured 175 
by decomposing each sub-mode 𝑈𝑈𝑖𝑖′(𝝆𝝆) into a fitted basis 𝜙𝜙𝑛𝑛′ (𝝆𝝆), written as 176 

𝑈𝑈𝑖𝑖′(𝝆𝝆) = ∑ 𝛼𝛼𝑛𝑛𝑛𝑛𝜙𝜙𝑛𝑛′ (𝝆𝝆)𝑁𝑁
𝑛𝑛=1                                              (S25) 177 

where 𝛼𝛼𝑛𝑛𝑛𝑛 = ∫ 𝑈𝑈𝑖𝑖′(𝝆𝝆)𝜙𝜙𝑛𝑛′ (𝝆𝝆)𝑑𝑑𝝆𝝆∞
−∞  . In practical applications, it has finite integral boundary. 178 

Then, the cross-spectral density can be reorganized as 179 

𝑊𝑊𝑇𝑇(𝝆𝝆1,𝝆𝝆2) = ∑ [∑ (𝛼𝛼𝑛𝑛𝑛𝑛)2𝑀𝑀
𝑖𝑖=1 ]𝜙𝜙𝑛𝑛′∗(𝝆𝝆1)𝜙𝜙𝑛𝑛′ (𝝆𝝆2)𝑁𝑁

𝑛𝑛=1 .                        (S26) 180 

Therefore, compared with Eq. (S6), the mode-weights 𝜆𝜆𝑛𝑛 can be calculated using 181 

𝜆𝜆𝑛𝑛 = ∑ (𝛼𝛼𝑛𝑛𝑛𝑛)2𝑀𝑀
𝑖𝑖=1 .                                                   (S27) 182 

The measurement with mode filters can easily show the spectrum of spatial modes and 183 
vector nature of the coherent beam but cannot efficiently reconstruct the entire BCP matrix 184 
(discussed in Section II) and perform inverse operation. 185 

 186 

Fig. S1. Intensity, cross spectral density (CSD) and mode-weight calculated from 187 
measured mixed modes. (a-c) Intensity, amplitude and phase of cross-spectral density of a 188 
GSM beam focused by a spherical lens; GSM mode-weights calculated with (d) Eq. (S21) 189 
(theoretical mode-weights) and (e) Eq. (5) (experimentally decomposed mode-weights); (f) 190 
mode-weights measurement error. The source coherence width and beam waist are set as 𝛿𝛿0 =191 
0.58𝑤𝑤0 and 𝑤𝑤0 = 1 mm, respectively. (g) HG eigen modes used for superposing a random 192 
beam. (h, i) Two examples of modal superposition. (left) Modes used and (right) corresponding 193 
experimentally measured mode-weights. 194 
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We consider the spherical lens system as an example. The focused cross-spectral density 195 
(measurement target) of a GSM is calculated with 𝑊𝑊𝑓𝑓(𝛒𝛒1,𝛒𝛒2) = ∑ 𝑃𝑃𝑡𝑡∗(𝛒𝛒1)𝑃𝑃𝑡𝑡(𝛒𝛒2)𝑀𝑀

𝑡𝑡=1 , where 𝛒𝛒 196 
denotes the coordinate on the focal plane and {𝑃𝑃𝑡𝑡(𝛒𝛒)} are the measured modes in the focal 197 
plane. Fig. S1a-c show the intensity and cross-spectral density results of the focused GSM. As 198 
shown in Fig. S1d, the theoretical mode-weights can then be calculated by fitting the focal 199 
coherence width and beam waist. The experimentally decomposed mode-weights are shown in 200 
Fig. S1e. As shown in Fig. S1f, the difference between these two mode-weights results is 201 
considerably smaller than the mode-weights. This means that the theoretically fitted and 202 
experimentally decomposed mode-weights results are nearly equivalent. However, compared 203 
with theoretical mode-weights calculation, the experimentally decomposed mode-weights are 204 
model independent. This feature is shown in Fig. S1g-i, which demonstrates the mode-weights 205 
measurement results of two randomly superposed beams. The Gaussian amplitude filter in Fig. 206 
1 is replaced with a spatial light modulator, which is used to load HG modes modulation masks 207 
(eight modes in total), shown in Fig. S1g. Two examples are given in Fig. S1h,i. The mode-208 
weights (shown in bars) calculated using the mixed modes agree with that actually used for 209 
superposition.  210 

II. Vector partially coherent beam 211 

For a vector partially coherent beam, the properties can be analyzed using the BCP matrix, 212 
written as 213 

𝐖𝐖(𝐫𝐫1, 𝐫𝐫2) = �𝑊𝑊𝑢𝑢𝑢𝑢(𝐫𝐫1, 𝐫𝐫2) 𝑊𝑊𝑢𝑢𝑢𝑢(𝐫𝐫1, 𝐫𝐫2)
𝑊𝑊𝑣𝑣𝑣𝑣(𝐫𝐫1, 𝐫𝐫2) 𝑊𝑊𝑣𝑣𝑣𝑣(𝐫𝐫1, 𝐫𝐫2)�,                                (S28) 214 

where 𝑢𝑢 and 𝑣𝑣 are the generic orthogonal polarization states and simplified in the following 215 
analysis as polarizations along 𝑥𝑥 and 𝑦𝑦 directions, that is horizontal and vertical polarization 216 
states: 217 

𝐖𝐖(𝐫𝐫1, 𝐫𝐫2) = �
𝑊𝑊𝑥𝑥𝑥𝑥(𝐫𝐫1, 𝐫𝐫2) 𝑊𝑊𝑥𝑥𝑥𝑥(𝐫𝐫1, 𝐫𝐫2)
𝑊𝑊𝑦𝑦𝑦𝑦(𝐫𝐫1, 𝐫𝐫2) 𝑊𝑊𝑦𝑦𝑦𝑦(𝐫𝐫1, 𝐫𝐫2)� = �

〈𝐸𝐸𝑥𝑥∗(𝒓𝒓1)𝐸𝐸𝑥𝑥(𝒓𝒓2)〉 〈𝐸𝐸𝑥𝑥∗(𝒓𝒓1)𝐸𝐸𝑦𝑦(𝒓𝒓2)〉
〈𝐸𝐸𝑦𝑦∗(𝒓𝒓1)𝐸𝐸𝑥𝑥(𝒓𝒓2)〉 〈𝐸𝐸𝑦𝑦∗(𝒓𝒓1)𝐸𝐸𝑦𝑦(𝒓𝒓2)〉�.  (S29) 218 

In general, the modal decomposition of a partially polarized and partially coherent beam 219 
can be expressed as32,33: 220 

𝑾𝑾(𝐫𝐫1, 𝐫𝐫2) = ∑ Λ𝑛𝑛𝚽𝚽𝑛𝑛
†(𝐫𝐫1)𝚽𝚽𝑛𝑛(𝐫𝐫1)𝑛𝑛 ,                                      (S30) 221 

where the eigenmodes have the vector form 𝚽𝚽𝑛𝑛(𝐫𝐫) = �
Φ𝑛𝑛;𝑢𝑢(𝐫𝐫)
Φ𝑛𝑛;𝑣𝑣(𝐫𝐫)�, Λ𝑛𝑛 denotes eigenvalues, and 222 

the dagger “†” represents the Hermitian conjugate. Gori2 theoretically showed that the modal 223 
decomposition of a partially polarized and partially coherent light source could be achieved by 224 
solving a pair of coupled integral equations: 225 

∑ ∫𝑾𝑾𝜂𝜂,𝜉𝜉(𝐫𝐫1, 𝐫𝐫2)Φ𝑛𝑛;𝜉𝜉(𝐫𝐫1)d2𝐫𝐫1𝜉𝜉 = Λ𝑛𝑛Φ𝑛𝑛;𝜂𝜂(𝐫𝐫2), (𝜂𝜂; 𝜉𝜉 = 𝑢𝑢, 𝑣𝑣).                (S31) 226 

In general, solving Eq. (S31) may be nontrivial. Thus, we suppose that the modes in two 227 
polarization components construct a complete set of orthogonal spatial basis. Furthermore, we 228 
only consider a vector partially coherent beam with diagonal BCP matrix, whose modal 229 



8 

 

 

decomposition can be simplified as that of a scalar cross-spectral density defined with 𝑊𝑊𝑒𝑒𝑒𝑒 =230 
𝑊𝑊𝑥𝑥𝑥𝑥 + 𝑊𝑊𝑦𝑦𝑦𝑦

33. Thus, the conclusion about coherence entropy will be consistent with that of 231 
scalar beam. 232 

 233 

Fig. S2. Modal decomposition of a (a) vector beam and (b) partially coherent vector beam 234 
after passing through a half-wave-plate (HWP). 235 

Considering a vector light source composed of two single-mode polarization components 236 
(see Fig. S2a), the BCP matrix on the source plane can be written as 237 

𝑾𝑾𝟎𝟎(𝐫𝐫1, 𝐫𝐫2) = �
𝑊𝑊𝑥𝑥𝑥𝑥(𝐫𝐫1, 𝐫𝐫2) 𝑊𝑊𝑥𝑥𝑥𝑥(𝐫𝐫1, 𝐫𝐫2)
𝑊𝑊𝑦𝑦𝑦𝑦(𝐫𝐫1, 𝐫𝐫2) 𝑊𝑊𝑦𝑦𝑦𝑦(𝐫𝐫1, 𝐫𝐫2)� 238 

= �
〈𝛼𝛼∗𝛼𝛼〉𝜙𝜙∗(𝒓𝒓1)𝜙𝜙(𝒓𝒓2) 〈𝛼𝛼∗𝛽𝛽〉𝜙𝜙(𝒓𝒓1)𝜓𝜓(𝒓𝒓2)
〈𝛽𝛽∗𝛼𝛼〉𝜓𝜓∗(𝒓𝒓1)𝜙𝜙(𝒓𝒓2) 〈𝛽𝛽∗𝛽𝛽〉𝜓𝜓∗(𝒓𝒓1)𝜓𝜓(𝒓𝒓2)�.      (S32) 239 

Here, the coefficient is statistically independent, i.e., 〈𝛼𝛼∗𝛽𝛽〉 = 〈𝛽𝛽∗𝛼𝛼〉 = 0, and thus, the BCP 240 
matrix becomes diagonal, as shown below: 241 

𝑾𝑾𝟎𝟎(𝐫𝐫1, 𝐫𝐫2) = �
𝜆𝜆𝑥𝑥𝑥𝑥𝜙𝜙∗(𝒓𝒓1)𝜙𝜙(𝒓𝒓2) 0

0 𝜆𝜆𝑦𝑦𝑦𝑦𝜓𝜓∗(𝒓𝒓1)𝜓𝜓(𝒓𝒓2)�.                   (S33) 242 

For each polarization component, the light field is coherent and the mode-weight is single 243 
valued, that is 𝜆𝜆𝑥𝑥𝑥𝑥 = 〈𝛼𝛼∗𝛼𝛼〉, 𝜆𝜆𝑥𝑥𝑥𝑥 = 0, 𝜆𝜆𝑦𝑦𝑦𝑦 = 0 and 𝜆𝜆𝑦𝑦𝑦𝑦 = 〈𝛽𝛽∗𝛽𝛽〉. As shown in Fig. S2a, taking 244 
the half-wave-plate as an example, which is a typical unitary transform, the Jones matrix is 245 
written as 246 
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𝐽𝐽𝐻𝐻𝐻𝐻𝐻𝐻 = �𝑐𝑐𝑐𝑐𝑐𝑐
2𝜃𝜃 − 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 − 𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃
� = �𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃

𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 −𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃�.         (S34) 247 

The output BCP matrix can be calculated as 248 

𝑾𝑾(𝛒𝛒1,𝛒𝛒2) = �
𝑊𝑊𝑥𝑥𝑥𝑥(𝛒𝛒1,𝛒𝛒2) 𝑊𝑊𝑥𝑥𝑥𝑥(𝛒𝛒1,𝛒𝛒2)
𝑊𝑊𝑦𝑦𝑦𝑦(𝛒𝛒1,𝛒𝛒2) 𝑊𝑊𝑦𝑦𝑦𝑦(𝛒𝛒1,𝛒𝛒2)� = 249 

�
〈𝛼𝛼1∗𝛼𝛼1〉𝜙𝜙∗(𝛒𝛒1)𝜙𝜙(𝛒𝛒2) + 〈𝛽𝛽1∗𝛽𝛽1〉𝜓𝜓∗(𝛒𝛒1)𝜓𝜓(𝛒𝛒2) 〈𝛼𝛼1∗𝛼𝛼2〉𝜙𝜙∗(𝛒𝛒1)𝜙𝜙(𝛒𝛒2) − 〈𝛽𝛽1∗𝛽𝛽2〉𝜓𝜓∗(𝛒𝛒1)𝜓𝜓(𝛒𝛒2)
〈𝛼𝛼2∗𝛼𝛼1〉𝜙𝜙∗(𝛒𝛒1)𝜙𝜙(𝛒𝛒2) − 〈𝛽𝛽2∗𝛽𝛽1〉𝜓𝜓∗(𝛒𝛒1)𝜓𝜓(𝛒𝛒2) 〈𝛼𝛼2∗𝛼𝛼2〉𝜙𝜙∗(𝛒𝛒1)𝜙𝜙(𝛒𝛒2) + 〈𝛽𝛽2∗𝛽𝛽2〉𝜓𝜓∗(𝛒𝛒1)𝜓𝜓(𝛒𝛒2)�.250 

(S35) 251 

The mode-weights of the four components in BCP matrix are 𝜆𝜆𝑥𝑥𝑥𝑥 = {〈𝛼𝛼1∗𝛼𝛼1〉, 〈𝛽𝛽1∗𝛽𝛽1〉}, 𝜆𝜆𝑦𝑦𝑦𝑦 =252 
{〈𝛼𝛼2∗𝛼𝛼2〉, 〈𝛽𝛽2∗𝛽𝛽2〉} , 𝜆𝜆𝑥𝑥𝑥𝑥 = {〈𝛼𝛼1∗𝛼𝛼2〉,−〈𝛽𝛽1∗𝛽𝛽2〉} , and 𝜆𝜆𝑥𝑥𝑥𝑥 = {〈𝛼𝛼2∗𝛼𝛼1〉,−〈𝛽𝛽2∗𝛽𝛽1〉} , where 𝛼𝛼12 + 𝛼𝛼22 =253 
𝛼𝛼2  and 𝛽𝛽12 + 𝛽𝛽22 = 𝛽𝛽2 . Other cross terms were omitted owing to uncorrelated coefficients. 254 
Compared with the source plane, the mode-weights for each component change. However, the 255 
mode-weights for each component will be consistent if the decomposition vector basis is 256 
adjusted. As shown in Fig. S2a, the BCP matrix on the output plane can be written as 257 

𝑾𝑾(𝛒𝛒1,𝛒𝛒2) = �
𝑊𝑊2𝜃𝜃,2𝜃𝜃(𝛒𝛒1,𝛒𝛒2) 𝑊𝑊2𝜃𝜃,𝜋𝜋−2𝜃𝜃(𝛒𝛒1,𝛒𝛒2)
𝑊𝑊𝜋𝜋−2𝜃𝜃,2𝜃𝜃(𝛒𝛒1,𝛒𝛒2) 𝑊𝑊𝜋𝜋−2𝜃𝜃,𝜋𝜋−2𝜃𝜃(𝛒𝛒1,𝛒𝛒2)� 258 

= �
〈𝛼𝛼∗𝛼𝛼〉𝜙𝜙∗(𝛒𝛒1)𝜙𝜙(𝛒𝛒2) 0

0 〈𝛽𝛽∗𝛽𝛽〉𝜓𝜓∗(𝛒𝛒1)𝜓𝜓(𝛒𝛒2)�.                  (S36) 259 

More specific examples have been clearly discussed previously32, wherein the authors state 260 
that the BCP matrix can be transformed into diagonal version by choosing a new reference 261 
frame. Similarly, for a vector partially coherent beam with more spatial modes for each 262 
polarization component, 263 

𝑾𝑾𝟎𝟎(𝐫𝐫1, 𝐫𝐫2) = �
∑ 𝜆𝜆𝑖𝑖𝜙𝜙𝑖𝑖∗(𝐫𝐫1)𝜙𝜙𝑖𝑖(𝐫𝐫2)𝑖𝑖 0

0 ∑ 𝜇𝜇𝑗𝑗𝜓𝜓𝑗𝑗∗(𝐫𝐫1)𝜓𝜓𝑗𝑗(𝐫𝐫2)𝑗𝑗
�.                     (S37) 264 

On the output plane, by adjusting the basis (�𝜙𝜙𝑖𝑖, 𝑒𝑒𝑥𝑥;𝜓𝜓𝑗𝑗 , 𝑒𝑒𝑦𝑦� into �𝜙𝜙𝑖𝑖′, 𝑒𝑒𝑢𝑢;𝜓𝜓𝑗𝑗′ , 𝑒𝑒𝑣𝑣�) (see Fig. S2b 265 
for an example), the BCP matrix becomes 266 

𝑾𝑾(𝛒𝛒1,𝛒𝛒2) = �𝑊𝑊𝑢𝑢𝑢𝑢(𝛒𝛒1,𝛒𝛒2) 𝑊𝑊𝑢𝑢𝑢𝑢(𝛒𝛒1,𝛒𝛒2)
𝑊𝑊𝑣𝑣𝑣𝑣(𝛒𝛒1,𝛒𝛒2) 𝑊𝑊𝑣𝑣𝑣𝑣(𝛒𝛒1,𝛒𝛒2)� 267 

= �
∑ 𝜆𝜆𝑖𝑖𝜙𝜙𝑖𝑖′∗(𝛒𝛒1)𝜙𝜙𝑖𝑖′(𝛒𝛒2)𝑖𝑖 0

0 ∑ 𝜇𝜇𝑗𝑗𝜓𝜓𝑗𝑗′∗(𝛒𝛒1)𝜓𝜓𝑗𝑗′(𝛒𝛒2)𝑖𝑖
�.     (S38) 268 

Therefore, if the optical system is unitary and the BCP matrix is initially diagonal, the overall 269 
mode-weight 𝜆𝜆 = 𝜆𝜆𝑥𝑥𝑥𝑥 + 𝜆𝜆𝑦𝑦𝑦𝑦 + 𝜆𝜆𝑥𝑥𝑥𝑥 + 𝜆𝜆𝑦𝑦𝑦𝑦 of a vector partially coherent beam will be constant 270 
when an appropriate basis (i.e., including spatial basis and vector basis) is chosen. The 271 
experimental decomposition may be achieved with the modal decomposition method proposed 272 
in this study. 273 

Experimental BCP modal decomposition. Considering Fig. S2a as an example, if the modal 274 
decomposition is performed by choosing x and y polarization basis, the modal decomposition 275 
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will be complicated owing to the coupling of two polarization components. By choosing a new 276 
set of vector basis, the problem reduces to two scalar modal decomposition problems. Note 277 
that, the modal decomposition proposed in this study is not sensitive to the polarization. In the 278 
other words, for an initially diagonal case, two components of the BCP matrix, that is the 279 
equivalent scalar cross-spectral density 𝑊𝑊𝑒𝑒𝑒𝑒 , can be decomposed together. If required, the 280 
modal decomposition for each component may be achieved using a linear polarizer. Then, the 281 
modal decomposition can be applied to demonstrate more complex entropy conversion cases 282 
discussed previously28-30. 283 

 284 

Fig. S3. BCP modal decomposition. Schematic of BCP measurement for the input vector 285 
partially coherent beam. PCB, partially coherent beam; QWP, quarter-wave plate; P, polarizer. 286 

For non-diagonal case, overall modal decomposition may be achieved when two 287 
polarization components share the same set of orthogonal spatial basis. As shown in Fig. S3, 288 
corresponding 𝑊𝑊𝜃𝜃,𝜀𝜀 can be measured by rotating the quarter-wave plate and the linear polarizer 289 
as 290 

𝑊𝑊𝜃𝜃,𝜀𝜀 = 𝑊𝑊𝑥𝑥𝑥𝑥cos2𝜃𝜃 + 𝑊𝑊𝑥𝑥𝑥𝑥exp(−𝑖𝑖𝑖𝑖)cos𝜃𝜃sin𝜃𝜃 + 𝑊𝑊𝑦𝑦𝑦𝑦exp(𝑖𝑖𝑖𝑖)cos𝜃𝜃sin𝜃𝜃 + 𝑊𝑊𝑦𝑦𝑦𝑦sin2𝜃𝜃.   (S39) 291 

Here, 𝜃𝜃 represents the angle between the x-axis and the quarter-wave plate’s fast axis, which 292 
induces a phase delay between the x and y components of the incident stochastic 293 
electromagnetic beam. Here, 𝜀𝜀 denotes the angle between the linear polarizer and x-axis. For 294 
example, 𝑊𝑊𝑥𝑥𝑥𝑥(𝐫𝐫1, 𝐫𝐫2)  and 𝑊𝑊𝑦𝑦𝑦𝑦(𝐫𝐫1, 𝐫𝐫2)  can be measured by performing modal decomposition 295 
after a quarter-wave plate and linear polarizer, where the linear polarizer angle and quarter-296 
wave plate fast axis are both parallel to x (𝜃𝜃 = 0 and 𝜀𝜀 = 0) for 𝑊𝑊𝑥𝑥𝑥𝑥(𝐫𝐫1, 𝐫𝐫2) and y (𝜃𝜃 = 𝜋𝜋/2 297 
and 𝜀𝜀 = 𝜋𝜋/2 ) for 𝑊𝑊𝑦𝑦𝑦𝑦(𝐫𝐫1, 𝐫𝐫2) . For other components, four measurement iterations (modal 298 
decomposition) are required: 299 

𝑊𝑊𝑥𝑥𝑥𝑥(𝐫𝐫1, 𝐫𝐫2) = 1
2
��𝑊𝑊𝜋𝜋

4,0(𝐫𝐫1, 𝐫𝐫2) −𝑊𝑊3𝜋𝜋
4 ,0(𝐫𝐫1, 𝐫𝐫2)� + 𝑖𝑖 �𝑊𝑊𝜋𝜋

4 ,𝜋𝜋2
(𝐫𝐫1, 𝐫𝐫2) −𝑊𝑊3𝜋𝜋

4 ,𝜋𝜋2
(𝐫𝐫1, 𝐫𝐫2)��, 300 

𝑊𝑊𝑦𝑦𝑦𝑦(𝐫𝐫1, 𝐫𝐫2) = 1
2
��𝑊𝑊𝜋𝜋

4,0(𝐫𝐫1, 𝐫𝐫2) −𝑊𝑊3𝜋𝜋
4 ,0(𝐫𝐫1, 𝐫𝐫2)� − 𝑖𝑖 �𝑊𝑊𝜋𝜋

4,𝜋𝜋2
(𝐫𝐫1, 𝐫𝐫2) −𝑊𝑊3𝜋𝜋

4 ,𝜋𝜋2
(𝐫𝐫1, 𝐫𝐫2)��.(S40) 301 

By substituting Eq. (S39) into Eq. (S40), the mode-weights of four components in the BCP 302 
matrix can be calculated. 303 

 304 
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Supplemental figures 305 

 306 

 307 

Fig. S4. Theoretically fitted coherence entropy of a GSM beam passing through the turbulent 308 
atmosphere system. (b, c) show the enlarged field of view of medium-coherence and low-309 
coherence cases in (a).  310 
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 311 

Fig. S5. Beam wander of three kinds of turbulence for various degrees of coherence. (a) Each 312 
frame has an exposure time of 3 ms, and 200 images are recorded within 10 s. The beam wander 313 
is defined according to the ratio of beam drift ∆𝑟𝑟 relative to beam width 𝑤𝑤0 and (b-d) show the 314 
diagrams of ∆𝑟𝑟/𝑤𝑤0 =0, 0.5, and 1. Green dot marks the coordinate center. Y-scale for (e-g) is 315 
log scale. The range of schematic diagrams (d-f) is not the real size of measurement range in 316 
modal decomposition. 317 

  318 
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 319 

Fig. S6. Simulated cross-talk matrices of Laguerre Gaussian modes on the (a) source plane 320 
and (b) after turbulent media. 321 

 322 

 323 

Fig. S7. Simulation results of demultiplexing using multifocal array. Intensity patterns and 324 
corresponding reconstructed mode-weights (a) in free space and (b) through turbulent media. 325 

 326 
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 327 

Fig. S8. Channel robustness using the conservation of coherence entropy. The incoherence 328 
decomposition basis is replaced with the HG modes and the other settings are the same as Fig. 329 
5.  330 


